二级电影 I 出轨的同学会3 I 有坂深雪av一区二区精品 I mm131美女极度色诱图 I 日韩av高清在线播放 I 天天躁夜夜躁狠狠是什么心态 I 亚洲福利视频二区 I 日韩成人一级 I 乱中年女人伦av三区人人人·妻人 I 久久人人爽人人 I 中日韩推理片在线看 I 天天更新av I 中国老妇性 I japanese mature乱熟49 I 日本激情动态图 I 中文字幕无线乱码人妻 I 91国产在线免费观看 I 97视频免费观看2区 I 黄页网站在线观看免费视频 I 天堂网www在线 I 免费av网站网址 I 免费tk脚心网站 I 免费久久99精品国产自 I 日产精品久久久一区二区福利 I 性大波大乳videoshd电影 I 致单身男女免费观看完整版 I 伦理片av I 在线免费观看毛片的网站 I 精品国产一区二区三区久久久狼 I 日韩在线视频神马麻豆 I 狠狠干资源网 I 亚洲无人禁区 I 字幕网资源站中文字幕 I 又粗又大又黄又硬又爽免费看 I gaybondage捆绑男人 I 国产精品久久久国产盗摄 I 麻豆偷拍 I 国产婷婷精品任我爽欧美 I 午夜爽爽爽 I 日本不卡在线播放 I 国产中文 I 欧美男男gay做受ⅹxx软件 I 波多野结衣被躁 I 99色免费 I 少妇bbbb搡bbbb搡bbbb I a级黄色免费视频 I 极品啪啪 I 中文字幕色片 I 欧洲熟妇色 欧美 I 中文字幕欧美久久日高清 I 亚洲AV无码国产精品午夜字幕 I 公交车艳妇系列1一40 I 九色porny丨入口在线 I 国产精品毛片一区二区在线看舒淇 I 国产欧美日韩综合视频专区 I 韩国伦理片两男一女 I 一区二区网

撥號18861759551

你的位置:首頁 > 技術文章 > 介紹反光目標

技術文章

介紹反光目標

技術文章

Introduction to Reflective Objectives

Microscope objectives are one of the most recognizable components of a microscope design. Microscope objectives magnify images so they can be viewed easily by the human eye via an eyepiece or by an imaging system (e.g. imaging lens and camera). Traditional objectives are refractive in design; in other words, they are comprised of a series of optical lenses. However, the need for high magnification focusing optics, chromatically corrected from the deep-ultraviolet to the far-infrared, has prompted industry to develop economical off-the-shelf microscope objectives for these wavelengths - reflective, or mirror-based, objectives are the answer. These objectives employ a reflective design of two or more mirrors to focus light or form an image. For more information on objectives in general, view Understanding Microscopes and Objectives.

 

The most common type of reflective objective is a two-mirror Schwarzschild objective (Figure 1). This system consists of a small diameter "primary" mirror, held in position by a spider mount and a large diameter "secondary" mirror with a center aperture. The primary and secondary mirrors are represented with gold coatings to better illustrate their location within the reflective objective housing. These mirror-based objectives are available in two configurations: infinity corrected for focusing applications and finite conjugate for imaging applications.

Figure 1: Anatomy of a Reflective Objective

 

TYPES OF REFLECTIVE OBJECTIVES

Infinity Corrected Reflective Objectives

Infinity corrected reflective objectives (Figure 2) are ideal for focusing applications. Collimated light (e.g. a laser source) enters the objective through the center aperture in the secondary mirror and comes to focus at its specified working distance. This configuration provides an economical means of focusing broadband or multiple laser sources to a single point. A common application is focusing an infrared (IR) or ultraviolet (UV) laser (such as an Nd:YAG laser) which incorporates a visible reference beam.

Figure 2: Infinity Corrected Reflective Objective Design

 

Finite-Conjugate Reflective Objectives

Finite conjugate reflective objectives (Figure 3) are ideal for imaging applications. They are a straightforward solution that does not require the use of any additional focusing optics. This finite conjugate mirror-based configuration provides excellent resolution, and can typically be used interchangeably with traditional refractive microscope objectives. Infinity corrected reflective objectives can be used in imaging applications with the addition of a tube lens and have the added flexibility of introducing beam manipulation optics into the beam path.

Figure 3: Finite-Conjugate Reflective Objective Design

 

THE BENEFITS OF REFLECTIVE VS. REFRACTIVE MICROSCOPE OBJECTIVE DESIGNS

The primary advantage of reflective objectives versus their refractive counterparts is their chromatic correction over broad spectral ranges. Refractive objectives that offer similar performance in limited ranges, for example the visible spectrum, are fairly popular. However, as the wavelength range begins to exceed the design range, transmission and image performance suffer. In addition, there are numerous reflective coating options available that allow unmatched performance in the deep-UV, IR, and at specific laser wavelengths.

 

Important Reflective Objective Specifications

When comparing reflective objectives, there are two parameters unique to these mirror-based systems that need to be considered: obscuration and transmitted wavefront. In reflective systems, there is a central portion of the primary mirror that does not transfer the rays to the secondary mirror but rather reflects them back out through the stray light baffle. To avoid this, many manufacturers place an absorptive coating over the central part of the primary mirror. There are two other locations were obscuration occurs, namely, the diameter of the primary mirror and the width of the spider legs. It is best to include all contribution of obscuration in the stated value, though some manufacturers only include the contribution of the central obscuration. For example, Edmund Optics® includes all contribution of obscuration in specifications for reflective objectives.

 

Transmitted wavefront error is perhaps the most important parameter for many applications requiring a reflective objective; transmitted wavefront error is the difference between the wavefront from when it enters and exits the system. Recent advances in mirror manufacturing enable production and testing of high accuracy surfaces, creating better corrected systems. Mirrors on the order of λ/20 peak-to-valley (P-V) are achievable and these allow the production of reflective objectives that have a transmitted wavefront ≤ λ/4 P-V. For example, Edmund Optics hard-mounts all fixed TECHSPEC® ReflX™ Reflective Objectives, guaranteeing λ/10 RMS transmitted wavefront on the standard line and λ/4 P-V transmitted wavefront on the high performance line. The fixed line of TECHSPEC® ReflX™ Reflective Objectives is actively aligned and tested on a Zygo GPI-XP Interferometer to ensure that each objective is within specification.

 

While traditional refractive objectives are ideal for a range of applications within a specific wavelength band, reflective objectives can be substituted to increase performance and image quality in broadband applications from the deep-UV to the far-IR. Reflective objectives are ideal for FTIR, laser focusing, and ellipsometry applications where diffraction-limited performance and chromatic correction are crucial.

聯系我們

地址:江蘇省江陰市人民東路1091號1017室 傳真:0510-68836817 Email:sales@rympo.com
24小時在線客服,為您服務!

版權所有 © 2025 江陰韻翔光電技術有限公司 備案號:蘇ICP備16003332號-1 技術支持:化工儀器網 管理登陸 GoogleSitemap

在線咨詢
QQ客服
QQ:17041053
電話咨詢
0510-68836815
關注微信
主站蜘蛛池模板: 万宁市| 商水县| 山丹县| 内丘县| 资溪县| 乌审旗| 广汉市| 库尔勒市| 咸丰县| 辉南县| 益阳市| 阜城县| 衡南县| 景宁| 大连市| 黄浦区| 高雄县| 阜新| 云林县| 卓尼县| 江川县| 雅江县| 沅江市| 寿宁县| 阳泉市| 白河县| 黄梅县| 鄂伦春自治旗| 遂昌县| 沙雅县| 洛宁县| 图木舒克市| 青川县| 秦皇岛市| 宣威市| 巴彦淖尔市| 临桂县| 镇安县| 秀山| 时尚| 响水县|