二级电影 I 出轨的同学会3 I 有坂深雪av一区二区精品 I mm131美女极度色诱图 I 日韩av高清在线播放 I 天天躁夜夜躁狠狠是什么心态 I 亚洲福利视频二区 I 日韩成人一级 I 乱中年女人伦av三区人人人·妻人 I 久久人人爽人人 I 中日韩推理片在线看 I 天天更新av I 中国老妇性 I japanese mature乱熟49 I 日本激情动态图 I 中文字幕无线乱码人妻 I 91国产在线免费观看 I 97视频免费观看2区 I 黄页网站在线观看免费视频 I 天堂网www在线 I 免费av网站网址 I 免费tk脚心网站 I 免费久久99精品国产自 I 日产精品久久久一区二区福利 I 性大波大乳videoshd电影 I 致单身男女免费观看完整版 I 伦理片av I 在线免费观看毛片的网站 I 精品国产一区二区三区久久久狼 I 日韩在线视频神马麻豆 I 狠狠干资源网 I 亚洲无人禁区 I 字幕网资源站中文字幕 I 又粗又大又黄又硬又爽免费看 I gaybondage捆绑男人 I 国产精品久久久国产盗摄 I 麻豆偷拍 I 国产婷婷精品任我爽欧美 I 午夜爽爽爽 I 日本不卡在线播放 I 国产中文 I 欧美男男gay做受ⅹxx软件 I 波多野结衣被躁 I 99色免费 I 少妇bbbb搡bbbb搡bbbb I a级黄色免费视频 I 极品啪啪 I 中文字幕色片 I 欧洲熟妇色 欧美 I 中文字幕欧美久久日高清 I 亚洲AV无码国产精品午夜字幕 I 公交车艳妇系列1一40 I 九色porny丨入口在线 I 国产精品毛片一区二区在线看舒淇 I 国产欧美日韩综合视频专区 I 韩国伦理片两男一女 I 一区二区网

撥號18861759551

你的位置:首頁 > 技術文章 > Advantages of Fresnel Lenses

技術文章

Advantages of Fresnel Lenses

技術文章

Advantages of Fresnel Lenses

Fresnel lenses consist of a series of concentric grooves etched into plastic. Their thin, lightweight construction, availability in small as well as large sizes, and excellent light gathering ability make them useful in a variety of applications.Fresnel lenses are most often used in light gathering applications, such as condenser systems or emitter/detector setups. They can also be used as magnifiers or projection lenses in illumination systems, and image formulation.

A Fresnel (pronounced fray-NEL) lens replaces the curved surface of a conventional optical lens with a series of concentric grooves. These contours act as individual refracting surfaces, bending parallel light rays to a common focal length (Figure 1). As a result, a Fresnel lens, while physically narrow in profile, is capable of focusing light similar to a conventional optical lens but has several advantages over its thicker counterpart.

 

THE THEORY OF FRESNEL LENSES

The driving principle behind the conception of a Fresnel lens is that the direction of propagation of light does not change within a medium (unless scattered). Instead, light rays are only deviated at the surfaces of a medium. As a result, the bulk of the material in the center of a lens serves only to increase the amount of weight and absorption within the system.

 

To take advantage of this physical property, 18th-century physicists began experimenting with the creation of what is known today as a Fresnel lens. At that time, grooves were cut into a piece of glass in order to create annular rings of a curved profile. This curved profile, when extruded, formed a conventional, curved lens – either spherical or aspherical (Figure 2). Due to this similar optical property compared to a conventional optical lens, a Fresnel lens can offer slightly better focusing performance, depending upon the application. In addition, high groove density allows higher quality images, while low groove density yields better efficiency (as needed in light gathering applications). However, it is important to note that when high precision imaging is required, conventional singlet, doublet, or aspheric optical lenses are still best.

MANUFACTURING FRESNEL LENSES

The first Fresnel lenses were made by tediously grinding and polishing glass by hand. Eventually, molten glass was poured into molds, but it was only with the development of optical-quality plastics and injection-molding technology in the 20th-century that the use of Fresnel lenses in many industrial and commercial applications became practical.

 

Fresnel lenses can be manufactured from a variety of substrates. They are manufactured from acrylic to polycarbonate to vinyl, depending on the desired wavelength of operation. Acrylic is the most common substrate due to its high transmittance in the visible and ultraviolet (UV) regions, but polycarbonate is the substrate of choice in harsh environments due to its resistance to impact and high temperature.

 

APPLICATION EXAMPLES

While French physicist Augustin-Jean Fresnel (1788 - 1827) was not the first to conceptualize a Fresnel lens, he was able to popularize it by integrating it into lighthouses. Since then, Fresnel lenses have been utilized in a variety of applications, from light collimation and light collection to magnification.

 

Light Collimation

 

A Fresnel lens can easily collimate a point source by placing it one focal length away from the source. In a finite-conjugate system, the grooved side of the Fresnel lens should face the longer conjugate (Figures 3 - 4) because this produces the best performance.

Figure 3: Light Collimation of a Point Source with a Fresnel Lens

 

Light Collection

 

One of the most common applications for a Fresnel lens is the collection of solar light, which is considered very nearly parallel (an infinite-conjugate system). Using a Fresnel lens for light collection is ideal for concentrating light onto a photovoltaic cell or to heat a surface. For example, a Fresnel lens can be used for popular home maintenance such as heating a home or pool! In these cases, the overall surface area of the lens determines the amount of collected light.

Figure 4: Light Collimation of a Point Source with a Fresnel Lens

 

Magnification

 

Another common application for a Fresnel lens is magnification. It can be used as a magnifier or projection lens; however, due to the high level of distortion, this is not recommended. Also, the image quality does not compare to that of a higher-precision system given the amount of distortion.

 

While commonly found in solar applications, Fresnel lenses are ideal for any application requiring inexpensive, thin, lightweight positive lens elements. Fresnel lenses are not new technology, but their pervasiveness has increased with improvements in manufacturing techniques and materials. Fresnel lenses are truly unique optical lenses which make them a great tool for a range of interesting and fun optical designs.

聯(lián)系我們

地址:江蘇省江陰市人民東路1091號1017室 傳真:0510-68836817 Email:sales@rympo.com
24小時在線客服,為您服務!

版權所有 © 2025 江陰韻翔光電技術有限公司 備案號:蘇ICP備16003332號-1 技術支持:化工儀器網(wǎng) 管理登陸 GoogleSitemap

在線咨詢
QQ客服
QQ:17041053
電話咨詢
0510-68836815
關注微信
主站蜘蛛池模板: 潞城市| 策勒县| 濮阳县| 延边| 剑川县| 青田县| 清苑县| 清丰县| 南江县| 黑龙江省| 宜兰县| 弋阳县| 中江县| 和林格尔县| 汉寿县| 乌鲁木齐县| 沾化县| 东明县| 古丈县| 宜都市| 鄱阳县| 北宁市| 延边| 阆中市| 佛山市| 彭山县| 鄄城县| 新平| 万源市| 常熟市| 镇远县| 龙江县| 巫山县| 辽宁省| 库伦旗| 灌阳县| 江口县| 丘北县| 赫章县| 伽师县| 农安县|